CHU Lab @ CHEM-NTHU
Biophysics & Time-resolved Spectroscopy Laboratory
* Corresponding authors
2024 (3)
64. Reaction kinetics of the sulfate radical (SO4•–) upon ultraviolet photolysis of persulfate (S2O82−) aqueous
solution
Lin, Z.-M.#; Huang, P.-C.#; Chu, L.-K.* Chem. Phys. Lett. 2024, 849, 141415.
63. Investigation of electronic structures of triplet states using step-scan time-resolved Fourier transform near-
infrared spectroscopy
Wu, C. C.; Tsai, Y.-X.; Chu, L.-K.*; Chen, I-C.* J. Phys. Chem. Lett. 2024, 15, 912.
62. Infrared characterization of hydrated products of glyoxal in aqueous solution
Chen, P.-R.; Chu, L.-K.* Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 306, 123571.
2023 (6)
61. Applications of time-resolved step-scan Fourier-transform infrared (ssFTIR) spectroscopy in revealing the
light-initiated reactions in condensed phases
Chu, L.-K.* J. Chin. Chem. Soc. 2023, 70, 2033.
60. Alcohol-induced retarded protein dynamics of human serum albumin unveiled by temperature jump
Kao, T.-L.; Chu, L.-K.* Chem. Phys. Lett. 2023, 833, 140899.
59. Critical role of trichloramine interaction with dichloramine for N-nitrosamine formation during breakpoint
chlorination
Chuang, Y.-H.*; Chen, T.-Y.; Chou, C.-S.; Chu, L.-K.; Hou, C.-Y.; Szczuka, A. Environ. Sci. Technol. 2023, 57, 15232.
58. Noncovalent association thermodynamics of turn-on fluorescent probes with human serum albumin:
dual-concentration ratio method
Chen, H.-Y.; Teng, C.-S.; Lin, P.-H.; Liu, C.-P.; Liu, W.-M.*; Chu, L.-K.* ChemBioChem 2023, 24, e202300370.
57. Real‐time observation for dynamic oscillation during the self‐assembly and clearance of aβ42
Yao, C.-N.; Wu, T.-H.; Cheng, P.-Y.; Tsao, Y.-C.; Lu, Y.-F.; Chu, L.-K.*; Chiu, C.-C.*; Lin, S.-Y.* Chem. Eur. J. 2023, 29,
e202300142.
56. In-situ and real-time vibrational spectroscopic characterizations of the photodegradation of nitrite in
the presence of methanediol
Cheng, C.-M.; Lu, C.-Z.; Hou, C.-Y.; Jhao, Y.-J.; Lai, Y.-F.; Chen, I-C.; Chuang, Y.-H.; Chu, L.-K.* Phys. Chem.
Chem. Phys. 2023, 25, 12165.
2022 (6)
55. Comparing the reactivities of methanol and methanediol in the photolysis of aqueous nitrite solution
Jhao, Y.-J.; Chu, L.-K.* J. Phys. Chem. A 2022, 126, 8233.
54. Infrared characterization of isotopic analogues of methanediol in aqueous solution
Chen, Y.-F.; Chu, L.-K.* J. Phys. Chem. A 2022, 126, 5302.
53. Roles of functional lipids in bacteriorhodopsin photocycle in various delipidated purple membranes
Zhong, Y.-R.; Yu, T.-Y.*; Chu, L.-K.* Biophys. J. 2022, 121, 1789.
52. Protein dynamics of human serum albumin at hypothermic temperatures investigated by temperature
jump
Yang, C.-T.; Chu, L.-K.* Phys. Chem. Chem. Phys. 2022, 24, 11079.
51. Rapid preparation of gaseous methanediol (CH2(OH)2)
Chen, Y.-F.; Chu, L.-K.* Chem. Commun. 2022, 58, 4208.
50. Influence of the thickness of silica layer on the radiative relaxation of AuNR@SiO2 core-shell
nanostructures upon photoexcitation
Lai, J.-J.#; Shih, M.-C.#; Chu, L.-K.* J. Chin. Chem. Soc. 2022, 69, 73.
2021 (5)
49. Radiative relaxation of gold nanorods coated with mesoporous silica with different porosities upon
nanosecond photoexcitation monitored by time-resolved infrared emission spectroscopy
Lu, J.-Y.; Chen, H.-A.; Yang, C.-M.; Chu, L.-K.* ACS Appl. Mater. Interfaces 2021, 13, 60018.
48. Differentiating the protein dynamics using fluorescence evolution of tryptophan residue(s): A comparative study of bovine and human serum albumins upon temperature jump
Wang, P.-Y.; Yang, C.-T.; Chu, L.-K.* Chem. Phys. Lett. 2021, 781, 138998.
47. Gaseous infrared spectra of the simplest geminal diol CH2(OH)2 and the isotopic analogues in the
hydration of formaldehyde
Jain, H.-Y.; Yang, C.-T.; Chu, L.-K.* Phys. Chem. Chem. Phys. 2021, 23, 14699.
46. Time-resolved infrared characterization on the photolysis of Roussin's red phenyl ester in different solvents
Yu, Y.-J.; Chiou, T.-W.; Yu, J.-S. K.*; Chu, L.-K.* J. Photochem. Photobiol. A, Chem. 2021, 406, 113032.
45. Tier-0 protein dynamics of bovine serum albumin: A kinetics and energetics study of the collective domain
motions
Li, H.-Y.; Tseng, K.-C.; Chu, L.-K.* Chem. Phys. Lett. 2021, 762, 138102.
2020 (1)
44. Infrared spectroscopic and kinetic characterization on the photolysis of nitrite in alcohol-containing
aqueous solutions
Shih, M.-C.; Hsu, Y.-J.; Chu, L.-K.* J. Phys. Chem. A 2020, 124, 3904.
2019 (4)
43. Influence of lipid compositions in the events of retinal Schiff base of bacteriorhodopsin embedded in
covalently circularized nanodiscs: Thermal isomerization, photoisomerization, and deprotonation
Huang, H.-Y.; Syue, M.-L.; Chen, I-C.*; Yu, T.-Y.*; Chu, L.-K.* J. Phys. Chem. B 2019, 123, 9123.
42. Reply to “Comment on ‘Does tetrahydrofuran (THF) behave like a solvent or a reactant in the photolysis of thionyl chloride (Cl2SO) in cyclohexane? A transient infrared difference study’”
Shih, M.-C.; Chu, L.-K.* J. Phys. Chem. A 2019, 123, 7895.
41. Photochemistry of bacteriorhodopsin with various oligomeric statuses in controlled membrane mimicking
environments: A spectroscopic study from femtoseconds to milliseconds
Kao, Y.-M.; Cheng, C.-H.; Syue, M.-L.; Huang, H.-Y.; Chen, I-C.*; Yu, T.-Y.*; Chu, L.-K.* J. Phys. Chem. B 2019, 123, 2032.
40. Extracting the protein dynamics of bovine serum albumin in the native condition using confocal fluorescent
temperature jump
Tseng, K.-C.; Chu, L.-K.* J. Appl. Phys. 2019, 125, 084701.
2018 (6)
39. Thermographic detection and analysis of the temporal and spatial evolution of temperature upon optical
heating of gold nanorod assembly immobilized in agar
Ho, C.-Y.; Chu, L.-K.* ACS Omega 2018, 3, 16960.
38. Highly efficient transfer of 7TM membrane protein from native membrane to covalently circularized
nanodisc
Yeh, V.; Lee, T.-Y.; Chen, C.-W.; Kuo, P.-C.; Shiue, J.; Chu, L.-K.*; Yu, T.-Y.* Sci. Rep. 2018, 8, 13501.
37. Radiative cooling of the surface-modified gold nanorods upon pulsed infrared photoexcitation
Guo, S.-S.; Chu, L.-K.* J. Phys. Chem. Lett. 2018, 9, 5110.
36. Does tetrahydrofuran (THF) behave like a solvent or a reactant in the photolysis of thionyl chloride (Cl2SO) in cyclohexane? A transient infrared difference study.
Shih, M.-C.; Chu, L.-K.* J. Phys. Chem. A 2018, 122, 5401.
35. Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting
Li, W.-L.; Chiou, T.-W.*; Chen, C.-H.; Yu, Y.-J.; Chu, L.-K.; Liaw, W.-F.* Dalton Trans. 2018, 47, 7128.
34. Spatially and temporally-resolved tryptophan fluorescence thermometry for monitoring the photothermal processes of gold nanorod suspensions
Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K.* Sens. Actuators B Chem. 2018, 255, Part 2, 1285.
2017 (4)
33. Using SiO2-coated gold nanorods as temperature jump photothermal convertors coupled with a confocal fluorescent thermometer to study protein unfolding kinetics: A case of bovine serum albumin
Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K.* J. Phys. Chem. C 2017, 121, 14981.
32. A molecular design of highly efficient thermally activated delayed fluorescence hosts for blue
phosphorescent and fluorescent organic light-emitting diodes
Lin, C.-C.; Huang, M.-J.; Chiu, M.-J.; Huang, M.-P.; Chang, C.-C.; Liao, C.-Y.; Chiang, K.-M.; Shiau, Y.-J.; Chou, T.-Y.;
Chu, L.-K.; Lin, H.-W.; Cheng, C.-H.* Chem. Mat. 2017, 29, 1527.
31. Distance-dependent excited-state electron transfer from tryptophan to gold nanoparticles through
polyproline helices
Lai, Y.-C.; Lin, C.-Y.; Chung, M.-R.; Hung, P.-Y.; Horng, J.-C.*; Chen, I-C.; Chu, L.-K.* J. Phys. Chem. C 2017, 121,
4882.
30. Monitoring the transient thermal infrared emission of gold nanoparticles upon photoexcitation with a
step-scan Fourier-transform spectrometer
Liu, J.-L.; Yang, Y.-T.; Lin, C.-T.; Yu, Y.-J.; Chen, J.-K.; Chu, L.-K.* J. Phys. Chem. C 2017, 121, 878.
2016 (3)
29. Lipids influence the proton pump activity of photosynthetic protein embedded in nanodiscs
Yeh, Vivien; Hsin, Y.; Lee, T.-Y.; Chan, J. C. C.; Yu, T.-Y.*; Chu, L.-K.* RSC Adv. 2016, 6, 88300.
28. Wavelength-dependent photocycle activity of xanthorhodopsin in the visible region
Chiang, H.-K.; Chu, L.-K.* Biochem. Biophys. Rep. 2016, 7, 347.
27. A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes
Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.- J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H.* J. Am. Chem. Soc. 2016, 138, 628.
2015 (5)
26. Terminal aromatic-proline interactions on polyproline conformation: Thermodynamic and kinetic studies
Lin, Y.-J.; Chu, L.-K.; Horng, J.-C.* J. Phys. Chem. B 2015, 119, 15796.
25. Development of a dinitrosyl iron complex molecular catalyst into a hydrogen evolution cathode
Chiou, T.-W.*; Lu, T.-T.*; Wu, Y.-H.; Yu, Y.-J.; Chu, L.-K.; Liaw, W.-F.* Angew. Chem. Int. Ed. 2015, 54, 14824.
24. Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs
Lee, T.-Y.#; Yeh, V.#; Chuang, J.; Chan, J.; Chu, L.-K.*; Yu, T.-Y.* Biophys. J. 2015, 109, 1899.
23. Quantifying the photothermal efficiency of gold nanoparticles using tryptophan as an in situ fluorescent
thermometer
Chiu, M.-J.; Chu, L.-K.* Phys. Chem. Chem. Phys. 2015, 17, 17090.
22. A high triplet energy, high thermal stability oxadiazole derivative as the electron transporter for highly
efficient red, green and blue phosphorescent OLEDs
Shih, C.-H.; Rajamalli, P.; Wu, C.-A.; Chiu, M.-J.; Chu, L.-K.; Cheng, C.-H.* J. Mat. Chem. C 2015, 3, 1491.
2014 (6)
21. Analyzing a steady-state phenomenon using an ensemble of sequential transient events: A proof of concept on photocurrent of bacteriorhodopsin upon continuous photoexcitation
Hung, C.-W.; Ho, C.-H.; Chu, L.-K.* J. Appl. Phys. 2014, 116, 144701.
20. Highly efficient orange and deep-red organic light emitting diodes with long operational lifetime using
carbazole-quinoline based bipolar host materials
Chen, C.-H.; Hsu, L.-C.; Rajamalli, P.; Chang, Y.-W.; Wu, F.-I.; Liao, C.-Y.; Chiu, M.-J.; Chou, P.-Y.; Huang, M.-J.; Chu, L.-K.; Cheng, C.-H.* J. Mat. Chem. C 2014, 2, 6183.
19. Photochemistry of a dual-bacteriorhodopsin system in H. marismortui: HmbRI and HmbRII
Tsai, F.-K.; Fu, H.-Y.; Yang, C.-S.; Chu, L.-K.* J. Phys. Chem. B 2014, 118, 7290.
18. Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: A case of
bacteriorhodopsin
Kuo, C.-L.; Chu, L.-K.* Bioelectrochemistry 2014, 99, 1.
17. Solvent isotope effect on the dark adaptation of bacteriorhodopsin in purple membrane: Viewpoints of
kinetics and thermodynamics
Chiang, H.-K.; Chu, L.-K.* J. Phys. Chem. B 2014, 118, 2662.
16. Mini Review: Transient infrared absorption spectra of reaction intermediates detected with a step-scan
Fourier-transform infrared spectrometer
Huang, Y.-H.; Chen, J.-D.; Hsu, K.-H.; Chu, L.-K.*; Lee, Y.-P.* J. Chin. Chem. Soc. 2014, 61, 47.
2013 (1)
15. Effects of surfactants on the purple membrane and bacteriorhodopsin: Solubilization or aggregation?
Ng, K. C.; Chu, L.-K.* J. Phys. Chem. B 2013, 117, 6241.
2012 (1)
14. Study of the reactive excited-state dynamics of delipidated bacteriorhodopsin upon surfactant treatments
Cheng, C.-W.; Lee, Y.-P.*; Chu, L.-K.* Chem. Phys. Lett. 2012, 539-540, 151.
Before joining NTHU
13. Transient infrared spectra of CH3SOO and CH3SO observed with step-scan Fourier-transform spectroscopy
Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2010, 133, 184303.
12. On the mechanism of the plasmonic field enhancement of the solar-to-electric energy conversion by the other photosynthetic system in nature (Bacteriorhodopsin): Kinetic and spectroscopic study
Chu, L.-K.¶; Yen, C.-W.¶; El-Sayed, M. A. J. Phys. Chem. C 2010, 114, 15358.
11. Bacteriorhodopsin-based photo-electrochemical cell
Chu, L.-K.; Yen, C.-W.; El-Sayed, M. A. Biosens. Bioelectron. 2010, 26, 620.
10. Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle
Yen, C.-W.; Chu, L.-K.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 7250.
09. Kinetics of the M intermediate in the photocycle of bacteriorhodopsin upon chemical modification with
surfactants
Chu, L.-K.; El-Sayed, M. A. Photochem. Photobiol. 2010, 86, 316.
08. Bacteriorhodopsin O-state photocycle kinetics: A surfactant study
Chu, L.-K.; El-Sayed, M. A. Photochem. Photobiol. 2010, 86, 70.
07. Infrared absorption of gaseous c-ClCOOH and t-ClCOOH detected with a step-scan Fourier-transform
spectrometer
Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2009, 130, 174304.
06. The ν7, ν8, and ν11 bands of propynal, C2HCHO, in the 650 cm−1 region
McKellar, A. R. W.; Watson, J. K. G.; Chu, L.-K.; Lee, Y.-P. J. Mol. Spec. 2008, 252, 230.
05. Infrared absorption of gaseous CH3OO detected with a step-scan Fourier-transform spectrometer
Huang, D.-R.; Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2007, 127, 234318.
04. Infrared absorption of gaseous ClCS detected with time-resolved Fourier-transform spectroscopy
Chu, L.-K.; Han, H.-L.; Lee, Y.-P. J. Chem. Phys. 2007, 126, 174310.
03. Infrared absorption of C6H5SO2 detected with time-resolved Fourier-transform spectroscopy
Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2007, 126, 134311.
02. Infrared absorption of CH3SO2 detected with time-resolved Fourier-transform spectroscopy
Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2006, 124, 244301.
01. Detection of ClSO with time-resolved Fourier-transform infrared absorption spectroscopy
Chu, L.-K.; Lee, Y.-P.; Jiang, E. Y. J. Chem. Phys. 2004, 120, 3179.